18.6 C
New York

How to Install DeepSeek AI on Your Local PC

Published:

If you’re looking to run DeepSeek AI locally on your computer, you’re in the right place! DeepSeek is one of the most powerful open-source AI models in 2025, offering advanced text generation, coding assistance, and research capabilities.

This step-by-step guide will walk you through installing DeepSeek on your Windows, macOS, or Linux machine. We’ll cover:

Let’s get started!


Step 1: Check System Requirements

Before installing DeepSeek, ensure your PC meets these minimum requirements:

ComponentMinimum RequirementRecommended for Better Performance
OSWindows 10/11, macOS 12+, Linux (Ubuntu 20.04+)Latest OS version
RAM16GB32GB or more
GPUNVIDIA GTX 1080 (8GB VRAM)RTX 3090/4090 (24GB+ VRAM)
Storage50GB free space (for models)SSD recommended
PythonPython 3.10 or laterPython 3.11+

💡 Note:

  • If you don’t have a powerful GPU, you can still run smaller versions of DeepSeek on CPU (but it will be slower).
  • For Mac users with Apple Silicon (M1/M2/M3), performance is good but may require extra optimizations.

Step 2: Install Python & Required Tools

DeepSeek runs on Python, so we need to set it up first.

📥 For Windows

  1. Download Python 3.11+ from python.org.
  2. Check “Add Python to PATH” during installation.
  3. Open Command Prompt (Admin) and verify:
   python --version
   pip --version

📥 For macOS/Linux

  1. Open Terminal and install Python:
   # macOS (if not installed)
   brew install python

   # Linux (Debian/Ubuntu)
   sudo apt update && sudo apt install python3 python3-pip
  1. Verify installation:
   python3 --version
   pip3 --version

Step 3: Install DeepSeek AI Model

DeepSeek models are available on Hugging Face. Install transformers and download the model:

  1. Install required libraries:
   pip install torch transformers accelerate


(Use pip3 on macOS/Linux if needed.)

  1. Run Python and load DeepSeek:
   from transformers import AutoModelForCausalLM, AutoTokenizer

   model_name = "deepseek-ai/deepseek-llm-7b"  # Try "deepseek-coder" for coding tasks
   tokenizer = AutoTokenizer.from_pretrained(model_name)
   model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")

   print("DeepSeek is ready!")

Option 2: Using Ollama (Simpler for Beginners)

If you prefer a one-click install, use Ollama:

  1. Download Ollama from ollama.ai.
  2. Open Terminal and run:
   ollama pull deepseek/deepseek-llm
   ollama run deepseek/deepseek-llm


Now you can chat with DeepSeek directly in your terminal!


Step 4: Run DeepSeek with a Web Interface (Optional)

If you want a ChatGPT-like UI, use Text Generation WebUI:

  1. Install it:
   git clone https://github.com/oobabooga/text-generation-webui
   cd text-generation-webui
   pip install -r requirements.txt
  1. Download the DeepSeek model (e.g., deepseek-ai/deepseek-llm-7b).
  2. Launch the WebUI:
   python server.py --model deepseek-ai_deepseek-llm-7b --auto-devices


Open http://localhost:7860 in your browser to use DeepSeek with a GUI!


Step 5: Testing DeepSeek

Let’s ask DeepSeek a question:

input_text = "Explain quantum computing in simple terms."
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

🎉 You’re done! DeepSeek is now running locally on your PC.


Troubleshooting Tips

  • Out of Memory? Try a smaller model like deepseek-ai/deepseek-llm-1b.
  • Slow on CPU? Use GGML quantized models for better performance.
  • Mac M1/M2 Issues? Install mlx for optimized Apple Silicon support.

What’s Next

Now that DeepSeek is installed, you can:
✔ Use it as a coding assistant (try deepseek-coder).
✔ Integrate it into your apps via API.
✔ Fine-tune it for custom tasks.


Final Thoughts

Running DeepSeek locally gives you full privacy, offline access, and customization. Whether you’re a developer, researcher, or AI enthusiast, this setup unlocks powerful AI capabilities on your own machine.

Need help? Drop a comment below! 🚀

Related articles

Recent articles